• About

home / cloud_regions

cloud_regions_metadata

21 rows where provider-carbon-intensity-market-annual = 0 and water-usage-effectiveness = "0.18"

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: cfe-region, em-zone-id, wt-region-id, geolocation, power-usage-effectiveness, grid-carbon-intensity-average-consumption-annual, grid-carbon-intensity-average-production-annual

Link rowid ▼ year cloud-provider cloud-region cfe-region em-zone-id wt-region-id location geolocation provider-cfe-hourly provider-cfe-annual power-usage-effectiveness water-usage-effectiveness provider-carbon-intensity-market-annual provider-carbon-intensity-average-consumption-hourly grid-carbon-intensity-average-consumption-annual grid-carbon-intensity-marginal-consumption-annual grid-carbon-intensity-average-production-annual grid-carbon-intensity total-ICT-energy-consumption-annual total-water-input renewable-energy-consumption renewable-energy-consumption-goe renewable-energy-consumption-ppa renewable-energy-consumption-onsite
40 40 2023 Amazon Web Services us-east-2 PJM US-MIDA-PJM PJM_SOUTHWEST_OH US East (Ohio) 39.8689,-84.3292     1.12 0.18 0.0   396.25   396.77              
41 41 2023 Amazon Web Services us-east-1 PJM US-MIDA-PJM PJM_DC US East (N. Virginia) 39.1057,-77.5544     1.15 0.18 0.0   396.25   396.77              
42 42 2023 Amazon Web Services us-west-1 CAISO US-CAL-CISO CAISO_NORTH US West (N. California) 36.7783,-119.417931     1.17 0.18 0.0   261.28   239.67              
43 43 2023 Amazon Web Services us-west-2 BPA US-NW-BPAT BPA US West (Oregon) 45.5371,-122.65     1.13 0.18 0.0   119.76   68.82              
46 46 2023 Amazon Web Services ap-south-2 Hyderabad IN-SO IND Asia Pacific (Hyderabad) 17.385,78.4867     1.5 0.18 0.0   551.31   549.72              
49 49 2023 Amazon Web Services ap-south-1 Maharashtra IN-WE IND Asia Pacific (Mumbai) 19.0761,72.8775     1.44 0.18 0.0   746.98   762.24              
50 50 2023 Amazon Web Services ap-northeast-3 Kansai JP-KN JP_KN Asia Pacific (Osaka) 34.6939,135.502       0.18 0.0   370.3   357.05              
54 54 2023 Amazon Web Services ap-northeast-1 Tokyo JP-TK JP_TK Asia Pacific (Tokyo) 35.6897,139.692     1.3 0.18 0.0   536.06   545.67              
55 55 2023 Amazon Web Services ca-central-1 Quebec CA-QC HQ Canada (Central) 45.5089,-73.5617     1.22 0.18 0.0   30.51   28.68              
56 56 2023 Amazon Web Services eu-central-1 Germany DE DE Europe (Frankfurt) 50.1106,8.6822     1.33 0.18 0.0   370.93   394.14              
57 57 2023 Amazon Web Services eu-west-1 Ireland IE IE Europe (Ireland) 53.35,-6.2603     1.1 0.18 0.0   403.4   416.03              
58 58 2023 Amazon Web Services eu-west-2 Great Britain GB UK Europe (London) 51.726,-0.3       0.18 0.0   187.89   200.18              
59 59 2023 Amazon Web Services eu-south-1 North Italy IT-NO IT Europe (Milan) 45.4669,9.19       0.18 0.0   298.62   379.97              
60 60 2023 Amazon Web Services eu-west-3 France FR FR Europe (Paris) 48.8567,2.3522       0.18 0.0   52.87   45.21              
61 61 2023 Amazon Web Services eu-south-2 Spain ES ES Europe (Spain) 40.3333,-3.8667     1.11 0.18 0.0   153.86   154.56              
62 62 2023 Amazon Web Services eu-north-1 Sweden SE SE Europe (Stockholm) 59.3294,18.0686     1.12 0.18 0.0   24.71   21.28              
63 63 2023 Amazon Web Services eu-central-2 Switzerland CH CH Europe (Zurich) 47.3744,8.5411       0.18 0.0   83.8   52.58              
68 68 2023 Amazon Web Services us-gov-east-1 PJM US-MIDA-PJM PJM_DC GovCloud (US East) 39.1057,-77.5544       0.18 0.0   396.25   396.77              
69 69 2023 Amazon Web Services us-gov-west-1 BPA US-NW-BPAT BPA GovCloud (US West) 45.5371,-122.65       0.18 0.0   119.76   68.82              
70 70 2023 Amazon Web Services cn-north-1       China (Beijing) 39.904,116.4075       0.18 0.0                      
71 71 2023 Amazon Web Services cn-northwest-1       China (Ningxia) 38.4795,106.2254     1.26 0.18 0.0                      

Advanced export

JSON shape: default, array, newline-delimited

CSV options:

CREATE TABLE "cloud_regions_metadata" (
   [year] INTEGER,
   [cloud-provider] TEXT,
   [cloud-region] TEXT,
   [cfe-region] TEXT,
   [em-zone-id] TEXT,
   [wt-region-id] TEXT,
   [location] TEXT,
   [geolocation] TEXT,
   [provider-cfe-hourly] FLOAT,
   [provider-cfe-annual] FLOAT,
   [power-usage-effectiveness] FLOAT,
   [water-usage-effectiveness] FLOAT,
   [provider-carbon-intensity-market-annual] FLOAT,
   [provider-carbon-intensity-average-consumption-hourly] FLOAT,
   [grid-carbon-intensity-average-consumption-annual] FLOAT,
   [grid-carbon-intensity-marginal-consumption-annual] FLOAT,
   [grid-carbon-intensity-average-production-annual] FLOAT,
   [grid-carbon-intensity] FLOAT,
   [total-ICT-energy-consumption-annual] INTEGER,
   [total-water-input] INTEGER,
   [renewable-energy-consumption] INTEGER,
   [renewable-energy-consumption-goe] INTEGER,
   [renewable-energy-consumption-ppa] INTEGER,
   [renewable-energy-consumption-onsite] INTEGER
);
Powered by Datasette · Queries took 46.106ms