cloud_regions_metadata
32 rows where water-usage-effectiveness = "0.18"
This data as json, CSV (advanced)
Suggested facets: cfe-region, em-zone-id, wt-region-id, geolocation, provider-carbon-intensity-market-annual
Link | rowid ▼ | year | cloud-provider | cloud-region | cfe-region | em-zone-id | wt-region-id | location | geolocation | provider-cfe-hourly | provider-cfe-annual | power-usage-effectiveness | water-usage-effectiveness | provider-carbon-intensity-market-annual | provider-carbon-intensity-average-consumption-hourly | grid-carbon-intensity-average-consumption-annual | grid-carbon-intensity-marginal-consumption-annual | grid-carbon-intensity-average-production-annual | grid-carbon-intensity | total-ICT-energy-consumption-annual | total-water-input | renewable-energy-consumption | renewable-energy-consumption-goe | renewable-energy-consumption-ppa | renewable-energy-consumption-onsite | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
40 | 40 | 2023 | Amazon Web Services | us-east-2 | PJM | US-MIDA-PJM | PJM_SOUTHWEST_OH | US East (Ohio) | 39.8689,-84.3292 | 0.18 | 0 | |||||||||||||||
41 | 41 | 2023 | Amazon Web Services | us-east-1 | PJM | US-MIDA-PJM | PJM_DC | US East (N. Virginia) | 39.1057,-77.5544 | 0.18 | 0 | |||||||||||||||
42 | 42 | 2023 | Amazon Web Services | us-west-1 | CAISO | US-CAL-CISO | CAISO_NORTH | US West (N. California) | 36.7783,-119.417931 | 0.18 | 0 | |||||||||||||||
43 | 43 | 2023 | Amazon Web Services | us-west-2 | BPA | US-NW-BPAT | BPA | US West (Oregon) | 45.5371,-122.65 | 0.18 | 0 | |||||||||||||||
44 | 44 | 2023 | Amazon Web Services | af-south-1 | South Africa | ZA | ZA | Africa (Cape Town) | -33.9253,18.4239 | 0.18 | ||||||||||||||||
45 | 45 | 2023 | Amazon Web Services | ap-east-1 | Hong Kong | HK | HK | Asia Pacific (Hong Kong) | 22.3,114.2 | 0.18 | ||||||||||||||||
46 | 46 | 2023 | Amazon Web Services | ap-south-2 | Hyderabad | IN-SO | IND | Asia Pacific (Hyderabad) | 17.385,78.4867 | 0.18 | 0 | |||||||||||||||
47 | 47 | 2023 | Amazon Web Services | ap-southeast-3 | Indonesia | ID | ID | Asia Pacific (Jakarta) | -6.175,106.8275 | 0.18 | ||||||||||||||||
48 | 48 | 2023 | Amazon Web Services | ap-southeast-4 | Victoria | AUS-VIC | NEM_VIC | Asia Pacific (Melbourne) | -37.8142,144.963 | 0.18 | ||||||||||||||||
49 | 49 | 2023 | Amazon Web Services | ap-south-1 | Maharashtra | IN-WE | IND | Asia Pacific (Mumbai) | 19.0761,72.8775 | 0.18 | 0 | |||||||||||||||
50 | 50 | 2023 | Amazon Web Services | ap-northeast-3 | Kansai | JP-KN | JP_KN | Asia Pacific (Osaka) | 34.6939,135.502 | 0.18 | 0 | |||||||||||||||
51 | 51 | 2023 | Amazon Web Services | ap-northeast-2 | South Korea | KR | KOR | Asia Pacific (Seoul) | 37.56,126.99 | 0.18 | ||||||||||||||||
52 | 52 | 2023 | Amazon Web Services | ap-southeast-1 | Singapore | SG | SGP | Asia Pacific (Singapore) | 1.3,103.8 | 0.18 | ||||||||||||||||
53 | 53 | 2023 | Amazon Web Services | ap-southeast-2 | New South Wales | AUS-NSW | NEM_NSW | Asia Pacific (Sydney) | -33.8678,151.21 | 0.18 | ||||||||||||||||
54 | 54 | 2023 | Amazon Web Services | ap-northeast-1 | Tokyo | JP-TK | JP_TK | Asia Pacific (Tokyo) | 35.6897,139.692 | 0.18 | 0 | |||||||||||||||
55 | 55 | 2023 | Amazon Web Services | ca-central-1 | Quebec | CA-QC | HQ | Canada (Central) | 45.5089,-73.5617 | 0.18 | 0 | |||||||||||||||
56 | 56 | 2023 | Amazon Web Services | eu-central-1 | Germany | DE | DE | Europe (Frankfurt) | 50.1106,8.6822 | 0.18 | 0 | |||||||||||||||
57 | 57 | 2023 | Amazon Web Services | eu-west-1 | Ireland | IE | IE | Europe (Ireland) | 53.35,-6.2603 | 0.18 | 0 | |||||||||||||||
58 | 58 | 2023 | Amazon Web Services | eu-west-2 | Great Britain | GB | UK | Europe (London) | 51.726,-0.3 | 0.18 | 0 | |||||||||||||||
59 | 59 | 2023 | Amazon Web Services | eu-south-1 | North Italy | IT | IT | Europe (Milan) | 45.4669,9.19 | 0.18 | 0 | |||||||||||||||
60 | 60 | 2023 | Amazon Web Services | eu-west-3 | France | FR | FR | Europe (Paris) | 48.8567,2.3522 | 0.18 | 0 | |||||||||||||||
61 | 61 | 2023 | Amazon Web Services | eu-south-2 | Spain | ES | ES | Europe (Spain) | 40.3333,-3.8667 | 0.18 | 0 | |||||||||||||||
62 | 62 | 2023 | Amazon Web Services | eu-north-1 | Sweden | SE | SE | Europe (Stockholm) | 59.3294,18.0686 | 0.18 | 0 | |||||||||||||||
63 | 63 | 2023 | Amazon Web Services | eu-central-2 | Switzerland | CH | CH | Europe (Zurich) | 47.3744,8.5411 | 0.18 | 0 | |||||||||||||||
64 | 64 | 2023 | Amazon Web Services | il-central-1 | Israel | IL | IL | Israel (Tel Aviv) | 32.0167,34.7667 | 0.18 | ||||||||||||||||
65 | 65 | 2023 | Amazon Web Services | me-south-1 | Bahrain | BH | BH | Middle East (Bahrain) | 26.219,50.538 | 0.18 | ||||||||||||||||
66 | 66 | 2023 | Amazon Web Services | me-central-1 | United Arab Emirates | AE | AE | Middle East (UAE) | 25.2631,55.2972 | 0.18 | ||||||||||||||||
67 | 67 | 2023 | Amazon Web Services | sa-east-1 | Central Brazil | BR-CS | BRA | South America (São Paulo) | -3.45,-68.95 | 0.18 | ||||||||||||||||
68 | 68 | 2023 | Amazon Web Services | us-gov-east-1 | PJM | US-MIDA-PJM | PJM_DC | GovCloud (US East) | 39.1057,-77.5544 | 0.18 | 0 | |||||||||||||||
69 | 69 | 2023 | Amazon Web Services | us-gov-west-1 | BPA | US-NW-BPAT | BPA | GovCloud (US West) | 45.5371,-122.65 | 0.18 | 0 | |||||||||||||||
70 | 70 | 2023 | Amazon Web Services | cn-north-1 | China (Beijing) | 39.904,116.4075 | 0.18 | 0 | ||||||||||||||||||
71 | 71 | 2023 | Amazon Web Services | cn-northwest-1 | China (Ningxia) | 38.4795,106.2254 | 0.18 | 0 |
Advanced export
JSON shape: default, array, newline-delimited
CREATE TABLE "cloud_regions_metadata" ( [year] INTEGER, [cloud-provider] TEXT, [cloud-region] TEXT, [cfe-region] TEXT, [em-zone-id] TEXT, [wt-region-id] TEXT, [location] TEXT, [geolocation] TEXT, [provider-cfe-hourly] FLOAT, [provider-cfe-annual] FLOAT, [power-usage-effectiveness] FLOAT, [water-usage-effectiveness] FLOAT, [provider-carbon-intensity-market-annual] INTEGER, [provider-carbon-intensity-average-consumption-hourly] INTEGER, [grid-carbon-intensity-average-consumption-annual] INTEGER, [grid-carbon-intensity-marginal-consumption-annual] FLOAT, [grid-carbon-intensity-average-production-annual] INTEGER, [grid-carbon-intensity] INTEGER, [total-ICT-energy-consumption-annual] INTEGER, [total-water-input] INTEGER, [renewable-energy-consumption] INTEGER, [renewable-energy-consumption-goe] INTEGER, [renewable-energy-consumption-ppa] INTEGER, [] INTEGER, [renewable-energy-consumption-onsite] INTEGER );