• About

home / cloud_regions

cloud_regions_metadata

24 rows where year = 2019

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: provider-cfe-hourly

Link rowid ▼ year cloud-provider cloud-region cfe-region em-zone-id wt-region-id location geolocation provider-cfe-hourly provider-cfe-annual power-usage-effectiveness water-usage-effectiveness provider-carbon-intensity-market-annual provider-carbon-intensity-average-consumption-hourly grid-carbon-intensity-average-consumption-annual grid-carbon-intensity-marginal-consumption-annual grid-carbon-intensity-average-production-annual grid-carbon-intensity total-ICT-energy-consumption-annual total-water-input renewable-energy-consumption renewable-energy-consumption-goe renewable-energy-consumption-ppa renewable-energy-consumption-onsite
287 287 2019 Google Cloud asia-east1 Taiwan TW TW Taiwan   0.19       0 541                      
288 288 2019 Google Cloud asia-east2 Hong Kong HK HK Hong Kong   0.0       0 506                      
289 289 2019 Google Cloud asia-northeast1 Tokyo JP-TK JP_TK Tokyo   0.0       0 569                      
290 290 2019 Google Cloud asia-northeast2 Kansai JP-KN JP_KN Osaka   0.0       0 414                      
291 291 2019 Google Cloud asia-northeast3 South Korea KR KOR Seoul   0.0       0 490                      
292 292 2019 Google Cloud asia-south1 Maharashtra IN-MH IND Mumbai   0.0       0 752                      
293 293 2019 Google Cloud asia-southeast1 Singapore SG SGP Singapore   0.03       0 493                      
294 294 2019 Google Cloud asia-southeast2 Indonesia ID ID Jakarta   0.0       0 647                      
295 295 2019 Google Cloud australia-southeast1 New South Wales AUS-NSW NEM_NSW Sydney   0.11       0 725                      
296 296 2019 Google Cloud europe-north1 Victoria AUS-VIC NEM_VIC Finland   0.77       0 181                      
297 297 2019 Google Cloud europe-west1 Belgium BE BE Belgium   0.68       0 196                      
298 298 2019 Google Cloud europe-west2 Great Britain GB UK London   0.54       0 257                      
299 299 2019 Google Cloud europe-west3 Germany DE DE Frankfurt   0.61       0 319                      
300 300 2019 Google Cloud europe-west4 Netherlands NL NL Netherlands   0.61       0 474                      
301 301 2019 Google Cloud europe-west6 Switzerland CH CH Zurich   0.0       0 87                      
302 302 2019 Google Cloud northamerica-northeast1 Quebec CA-QC HQ Montreal   0.0       0 27                      
303 303 2019 Google Cloud southamerica-east1 Central Brazil BR-CS BRA Sao Paulo   0.87       0 109                      
304 304 2019 Google Cloud us-central1 MISO US-MIDW-MISO MISO_MASON_CITY Iowa   0.78       0 479                      
305 305 2019 Google Cloud us-east1 SC US-CAR-SC SC South Carolina   0.19       0 500                      
306 306 2019 Google Cloud us-east4 PJM US-MIDA-PJM PJM_DC Northern Virginia   0.41       0 383                      
307 307 2019 Google Cloud us-west1 BPA US-NW-BPAT BPA Oregon   0.89       0 117                      
308 308 2019 Google Cloud us-west2 CAISO US-CAL-CISO LDWP Los Angeles   0.55       0 248                      
309 309 2019 Google Cloud us-west3 PACE US-NW-PACE PACE Salt Lake City   0.25       0 561                      
310 310 2019 Google Cloud us-west4 NVE US-NW-NEVP NEVP Las Vegas   0.13       0 491                      

Advanced export

JSON shape: default, array, newline-delimited

CSV options:

CREATE TABLE "cloud_regions_metadata" (
   [year] INTEGER,
   [cloud-provider] TEXT,
   [cloud-region] TEXT,
   [cfe-region] TEXT,
   [em-zone-id] TEXT,
   [wt-region-id] TEXT,
   [location] TEXT,
   [geolocation] TEXT,
   [provider-cfe-hourly] FLOAT,
   [provider-cfe-annual] FLOAT,
   [power-usage-effectiveness] FLOAT,
   [water-usage-effectiveness] FLOAT,
   [provider-carbon-intensity-market-annual] INTEGER,
   [provider-carbon-intensity-average-consumption-hourly] INTEGER,
   [grid-carbon-intensity-average-consumption-annual] INTEGER,
   [grid-carbon-intensity-marginal-consumption-annual] FLOAT,
   [grid-carbon-intensity-average-production-annual] INTEGER,
   [grid-carbon-intensity] INTEGER,
   [total-ICT-energy-consumption-annual] INTEGER,
   [total-water-input] INTEGER,
   [renewable-energy-consumption] INTEGER,
   [renewable-energy-consumption-goe] INTEGER,
   [renewable-energy-consumption-ppa] INTEGER,
   [] INTEGER,
   [renewable-energy-consumption-onsite] INTEGER
);
Powered by Datasette · Queries took 61.974ms