• About

home / cloud_regions

cloud_regions_metadata

24 rows where year = 2019

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: provider-cfe-hourly

Link rowid ▼ year cloud-provider cloud-region cfe-region em-zone-id wt-region-id location geolocation provider-cfe-hourly provider-cfe-annual power-usage-effectiveness water-usage-effectiveness provider-carbon-intensity-market-annual provider-carbon-intensity-average-consumption-hourly grid-carbon-intensity-average-consumption-annual grid-carbon-intensity-marginal-consumption-annual grid-carbon-intensity-average-production-annual grid-carbon-intensity total-ICT-energy-consumption-annual total-water-input renewable-energy-consumption renewable-energy-consumption-goe renewable-energy-consumption-ppa renewable-energy-consumption-onsite
287 287 2019 Google Cloud asia-east1 Taiwan TW TW Taiwan   0.19       0.0 541.0 539.3   539.33              
288 288 2019 Google Cloud asia-east2 Hong Kong HK HK Hong Kong   0.0       0.0 506.0 435.36   435.36              
289 289 2019 Google Cloud asia-northeast1 Tokyo JP-TK JP_TK Tokyo   0.0       0.0 569.0 561.77   569.67              
290 290 2019 Google Cloud asia-northeast2 Kansai JP-KN JP_KN Osaka   0.0       0.0 414.0 407.42   407.6              
291 291 2019 Google Cloud asia-northeast3 South Korea KR KOR Seoul   0.0       0.0 490.0 490.27   490.27              
292 292 2019 Google Cloud asia-south1 Maharashtra IN-WE IND Mumbai   0.0       0.0 752.0 706.62   707.47              
293 293 2019 Google Cloud asia-southeast1 Singapore SG SGP Singapore   0.03       0.0 493.0 493.32   492.9              
294 294 2019 Google Cloud asia-southeast2 Indonesia ID ID Jakarta   0.0       0.0 647.0 652.36   652.36              
295 295 2019 Google Cloud australia-southeast1 New South Wales AU-NSW NEM_NSW Sydney   0.11       0.0 725.0 711.83   711.82              
296 296 2019 Google Cloud europe-north1 Victoria AU-VIC NEM_VIC Finland   0.77       0.0 181.0 648.97   648.97              
297 297 2019 Google Cloud europe-west1 Belgium BE BE Belgium   0.68       0.0 196.0 209.8   202.19              
298 298 2019 Google Cloud europe-west2 Great Britain GB UK London   0.54       0.0 257.0 230.3   233.65              
299 299 2019 Google Cloud europe-west3 Germany DE DE Frankfurt   0.61       0.0 319.0 432.36   445.06              
300 300 2019 Google Cloud europe-west4 Netherlands NL NL Netherlands   0.61       0.0 474.0 416.29   448.38              
301 301 2019 Google Cloud europe-west6 Switzerland CH CH Zurich   0.0       0.0 87.0 130.78   78.12              
302 302 2019 Google Cloud northamerica-northeast1 Quebec CA-QC HQ Montreal   0.0       0.0 27.0 28.46   28.52              
303 303 2019 Google Cloud southamerica-east1 Central Brazil BR-CS BRA Sao Paulo   0.87       0.0 109.0 107.07   104.01              
304 304 2019 Google Cloud us-central1 MISO US-MIDW-MISO MISO_MASON_CITY Iowa   0.78       0.0 479.0 581.2   600.27              
305 305 2019 Google Cloud us-east1 SC US-CAR-SC SC South Carolina   0.19       0.0 500.0 627.68   768.4              
306 306 2019 Google Cloud us-east4 PJM US-MIDA-PJM PJM_DC Northern Virginia   0.41       0.0 383.0 454.22   449.69              
307 307 2019 Google Cloud us-west1 BPA US-NW-BPAT BPA Oregon   0.89       0.0 117.0 115.03   74.15              
308 308 2019 Google Cloud us-west2 CAISO US-CAL-CISO LDWP Los Angeles   0.55       0.0 248.0 253.75   223.36              
309 309 2019 Google Cloud us-west3 PACE US-NW-PACE PACE Salt Lake City   0.25       0.0 561.0 704.22   772.14              
310 310 2019 Google Cloud us-west4 NVE US-NW-NEVP NEVP Las Vegas   0.13       0.0 491.0 540.58   575.79              

Advanced export

JSON shape: default, array, newline-delimited

CSV options:

CREATE TABLE "cloud_regions_metadata" (
   [year] INTEGER,
   [cloud-provider] TEXT,
   [cloud-region] TEXT,
   [cfe-region] TEXT,
   [em-zone-id] TEXT,
   [wt-region-id] TEXT,
   [location] TEXT,
   [geolocation] TEXT,
   [provider-cfe-hourly] FLOAT,
   [provider-cfe-annual] FLOAT,
   [power-usage-effectiveness] FLOAT,
   [water-usage-effectiveness] FLOAT,
   [provider-carbon-intensity-market-annual] FLOAT,
   [provider-carbon-intensity-average-consumption-hourly] FLOAT,
   [grid-carbon-intensity-average-consumption-annual] FLOAT,
   [grid-carbon-intensity-marginal-consumption-annual] FLOAT,
   [grid-carbon-intensity-average-production-annual] FLOAT,
   [grid-carbon-intensity] FLOAT,
   [total-ICT-energy-consumption-annual] INTEGER,
   [total-water-input] INTEGER,
   [renewable-energy-consumption] INTEGER,
   [renewable-energy-consumption-goe] INTEGER,
   [renewable-energy-consumption-ppa] INTEGER,
   [renewable-energy-consumption-onsite] INTEGER
);
Powered by Datasette · Queries took 80.984ms